freezing Keras model
為了將model提供其他應用程式做使用
參考:https://towardsdatascience.com/freezing-a-keras-model-c2e26cb84a38
補充:
在讀入model後
可以get loss 比率和SSIM:
loss_function,SSIM=keras_model.evaluate(test_x,test_y)
將keras .h5 儲存成 tensorflow .pb
- 目標
我會將keras 轉換成 tensorflow 的 pb檔是為了在tensorRT中建置model,在tensorRT中需要再將.pb檔轉成.uff,才能提供給TensorRT使用,因為tensorRT支援的關係,目前需要在Linux的作業系統之下才能將.pb檔轉成.uff檔。
概要:
Keras framework提供將model儲存成.h5檔的function,其中的內容包含自訂的 neural network 的graph,與訓練之後的參數(weights),也可以單獨儲存weights,如果只有保留weights則需要在Tensorflow中重新建立graph,並將weight帶入,但這方法非常沒有效率。
於是將訓練好的model freezing,不能再更改weights,也就是不能在訓練,並且將單獨儲存的weights(.ckpt檔.meta檔)重建出graph,最後輸出.pb。
需求:
1. 安裝keras、tensorflow
2. TensorBoard(要用來查詢output的名稱)
實作:
1.將import 的來源要改成 tensorflow.keras
ex. from keras import Conv2D ->tensorflow.keras.layers import Convolution2D
def freeze_graph(model_dir, output_node_names):
"""Extract the sub graph defined by the output nodes and convert
all its variables into constant
Args:
model_dir: the root folder containing the checkpoint state file
output_node_names: a string, containing all the output node's names,
comma separated
"""
if not tf.gfile.Exists(model_dir):
raise AssertionError(
"Export directory doesn't exists. Please specify an export "
"directory: %s" % model_dir)
if not output_node_names:
print("You need to supply the name of a node to --output_node_names.")
return -1
# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_dir)
input_checkpoint = checkpoint.model_checkpoint_path
# We precise the file fullname of our freezed graph
absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
output_graph = absolute_model_dir + "/frozen_model.pb"
# We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True
# We start a session using a temporary fresh Graph
with tf.Session(graph=tf.Graph()) as sess:
# We import the meta graph in the current default Graph
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
# We restore the weights
saver.restore(sess, input_checkpoint)
# We use a built-in TF helper to export variables to constants
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)
# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
return output_graph_def
freeze_graph('kerasfile path',"outputs name")
參考:https://towardsdatascience.com/freezing-a-keras-model-c2e26cb84a38
補充:
在讀入model後
可以get loss 比率和SSIM:
loss_function,SSIM=keras_model.evaluate(test_x,test_y)
將keras .h5 儲存成 tensorflow .pb
留言
張貼留言